Spectral Characterization of Some Generalized Odd Graphs
نویسندگان
چکیده
Suppose G is a connected, k-regular graph such that Spec G Spec G where G is a distance-regular graph of diameter d with parameters a1 a2 adÿ1 0 and ad > 0; i.e., a generalized odd graph, we show that G must be distance-regular with the same intersection array as that of G in terms of the notion of Ho ̈man Polynomials. Furthermore, G is isomorphic to G if G is one of the odd polygon C2d1, the Odd graph Od1, the folded 2d 1-cube, the coset graph of binary Golay code d 3, the Ho ̈manSingleton graph d 2, the Gewirtz graph d 2, the Higman-Sims graph d 2, or the second subconstituent of the Higman-Sims graph d 2.
منابع مشابه
SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملSpectral Characterization of Some Cubic Graphs
It is proved that the Cartesian product of an odd cycle with the complete graph on 2 vertices, is determined by the spectrum of the adjacency matrix. We also present some computational results on the spectral characterization of cubic graphs on at most 20 vertices. AMS Subject Classification: 05C50.
متن کاملSkolem Odd Difference Mean Graphs
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
متن کاملFurther results on odd mean labeling of some subdivision graphs
Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...
متن کاملNo. 2010–47 AN ODD CHARACTERIZATION OF THE GENERALIZED ODD GRAPHS
We show that any connected regular graph with d + 1 distinct eigenvalues and odd-girth 2d + 1 is distance-regular, and in particular that it is a generalized odd graph. 2010 Mathematics Subject Classification: 05E30, 05C50; JEL Classification System: C0
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 15 شماره
صفحات -
تاریخ انتشار 1999